Elektronik: Mit Quantenmechanik zu besseren elektronischen Materialien
Das Element Bismut hat exotische Eigenschaften, die es interessant machen für energieeffiziente elektronische Bauteile wie schnellere Computer. Um praxistauglich zu sein, muss ein Material jedoch auch grundsätzlich tolerant sein gegenüber Verunreinigungen.
Das konnten zwei Forscher vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) nun erstmals für Bismut nachweisen. Ihre Ergebnisse haben sie in den Physical Review Letters (Ausgabe 108, 2012) veröffentlicht.
Gemeinsam mit dem amerikanischen Brookhaven National Laboratory stellten CENIDE-Forscher um Prof. Dr. Michael Horn-von Hoegen zunächst eine extrem glatte Bismutschicht her, mit überraschenden Eigenschaften: Egal wie dick die Bismutschicht ist, ihr elektrischer Widerstand bleibt immer gleich, da der Strom ausschließlich in einer dünnen Schicht direkt an der Oberfläche fließt. Daher ist dies ein ideales System, um zu testen, wie sich Verunreinigungen auf der Oberfläche auf den Elektronentransport, also den Stromfluss, auswirken.
Um das herauszufinden, haben die Wissenschaftler weitere Bismutatome auf die zuvor so perfekt glatte Schicht aufgebracht. Dafür waren Temperaturen von rund -190 °C notwendig und zusätzlich ein Vakuum, das noch weniger Moleküle enthält als das Vakuum im Weltall. Die Atome setzten sich auf der vormals glatten Oberfläche ab wie Sandkörner auf einer Fliese. Doch sie sind beweglich und liefen daher zu „Inseln“ zusammen, die aus vielen nebeneinanderliegenden Atomen bestanden.
Elektrische Messungen ergaben das zweite erstaunliche Ergebnis: Egal, ob ein Elektron bei seinem Weg auf ein einzelnes Atom oder eine ganze Insel trifft, es wird immer auf die gleiche Weise gestreut, das heißt von seiner Bahn abgelenkt. Das ist verwunderlich, denn unsere Intuition sagt uns, dass ein größeres Hindernis eigentlich häufiger getroffen werden und damit stärker streuen müsste. Prof. Dr. Axel Lorke, der die Inselbildung am Computer modelliert hat, erklärt das Phänomen so: „Wenn Sie auf der Autobahn fahren, ist es auch egal, ob auf einmal ein Stuhl oder ein liegengebliebener LKW auf der Fahrbahn steht – bremsen müssen Sie in beiden Fällen.“ Horn-von Hoegen ergänzt: „Das Überraschende ist jedoch, dass Sie um einen LKW eine weit größere Kurve fahren würden als um einen Stuhl, um im Beispiel zu bleiben. Das tut das Elektron hier eben nicht, es weicht immer gleich weit aus.“
Erste Erklärungen der beiden Experimentalphysiker basieren auf der Quantenphysik, die besagt, dass Elektronen sowohl Teilchen- als auch Welleneigenschaften haben. Und genauso wie Meereswellen an einer Kaimauer reflektiert werden, treffen auch die Elektronenwellen auf die atomaren Inseln und werden dort gestreut. Und jedes gestreute Elektron vermindert den Stromfluss durch das Material. Horn-von Hoegen, Spezialist für Mikroskopie und Kristallwachstum, ist es gelungen, das Elektronen-Wellenmuster um kleine und große Inseln zu vermessen. Das erstaunliche Resultat: Sie sind nahezu unabhängig von der Inselgröße. Das erklärt, warum aus Sicht der Elektronen alle Hindernisse gleich aussehen.
Ein weiteres Ergebnis beweist, dass die Wechselwirkung zwischen Elektron und Insel extrem klein ist: Nur jedes hundertste Elektron wird überhaupt gestreut. Damit sind die Atominseln für Elektronen leichter zu passieren als eine Fensterscheibe für Licht (dort beträgt die Reflexion etwa 4 Prozent). Dies ist bedeutend für elektronische Bauteile der Zukunft. Denn je weniger die Elektronen gestreut werden, desto schneller lässt sich der Strom schalten und desto weniger elektrische Leistung wird benötigt.
Quelle: Universität Duisburg-Essen – 20.07.2012.