Methanol, flüssige Wasserstoffspeicherung

Die Wasserstoffspeicherung ist die umkehrbare Aufbewahrung von Wasserstoff, mit dem Ziel, dessen chemische und physikalische Eigenschaften für eine weitere Verwendung zu erhalten. Die Speicherung umfasst die Vorgänge der Einspeicherung oder Speicherbeladung, der zeitlich befristeten Lagerung und der Ausspeicherung oder Speicherentladung. Konventionelle Methoden der Speicherung von Wasserstoff sind:

Die Wasserstoffspeicherung ist die umkehrbare Aufbewahrung von Wasserstoff, mit dem Ziel, dessen chemische und physikalische Eigenschaften für eine weitere Verwendung zu erhalten. Die Speicherung umfasst die Vorgänge der Einspeicherung oder Speicherbeladung, der zeitlich befristeten Lagerung und der Ausspeicherung oder Speicherentladung. Konventionelle Methoden der Speicherung von Wasserstoff sind:

Wie kann Wasserstoff gespeichert werden und Aufwand und Energiebedarf
Kompressoren)

Flüssiggasspeicherung (Speicherung in verflüssigter Form durch Kühlung und Verdichten)

Alternative Formen der Speicherung von Wasserstoff nutzen die physikalische oder chemische Bindung an einen anderen Stoff:

Absorption im Metallhydridspeicher (Speicherung als chemische Verbindung zwischen Wasserstoff und einem Metall bzw. einer Legierung)

Adsorptionsspeicherung (adsorptive Speicherung von Wasserstoff in hochporösen Materialien)

chemische Bindung, bei der der Wasserstoff durch eine chemische Reaktion in einen anderen Stoff überführt wird, der z. B. drucklos und bei Raumtemperatur gelagert und transportiert werden kann („Chemisch gebundener Wasserstoff“). Bei der Ausspeicherung erfolgt dann die Umkehrreaktion. Beispiele sind Hydrierung organischer Substanzen oder Bildung von Alkoholen mit CO.

Problemstellung

Wegen seiner chemischen und physikalischen Eigenschaften unterscheidet sich der Umgang mit Wasserstoff von den bisher genutzten Energieträgern.

Wasserstoff bildet beim Austreten ein entzündliches Gemisch mit der Umgebungsluft, bei einem Anteil von 4 % bis 75 %. Ein explosives Gemisch (Knallgas) bildet Wasserstoff erst bei einem Anteil von 18 %. Weil Wasserstoff eine hohe Diffusionsneigung hat und Gemischwolken aus Wasserstoff und Luft eine geringere Dichte als gewöhnliche Luft haben, verflüchtigt es sich in offener Umgebung in der Regel, bevor es ein explosives Gemisch bilden kann, oder es brennt in heißen Umgebungen bereits bei der Konzentration von 4 % ab.

Wasserstoff hat im Vergleich zu vielen Kohlenwasserstoffen eine niedrige Verbrennungsenthalpie und damit eine niedrige volumenbezogene Energiedichte (ca. 1/3 von Erdgas). Das erfordert zum Speichern äquivalenter Energiemengen einen dreimal so großen Tank oder einen dreimal so hohen Druck wie für Erdgas. Auf Grund der geringen molaren Masse ergibt sich jedoch eine vergleichsweise hohe massenbezogene Energiedichte (z. B. mehr als die doppelte massenbezogene Energiedichte von Erdgas).

Durch seine geringe Molekülgröße diffundiert Wasserstoff relativ gut durch eine Vielzahl von Materialien, sodass viele Materialien für die Tankhülle ungeeignet sind. Durch hohe Temperaturen und hohen Innendruck wird der Diffusionsprozess verstärkt. Durch Wasserstoffversprödung werden metallische Tankhüllen zusätzlich belastet. Bei Hüllen aus Kunststoff tritt dieser Effekt nicht auf.

Bei der kryogenen Wasserstoffverflüssigung kommt es durch unvermeidbare thermische Isolationsverluste zum Verdampfen/Ausgasen. Damit der Druck in den Behältern nicht zu hoch steigt, wird das Wasserstoffgas mittels eines Überdruckventils abgelassen. Kann dieses entstehende Wasserstoffgas nicht genutzt werden, entstehen erhebliche Verluste. Beispielsweise leert sich der halbvolle Flüssigwasserstofftank des BMW Hydrogen7 bei Nichtbenutzung in 9 Tagen.[1]

Nicht nur zur Herstellung von Wasserstoff, sondern auch zur Speicherung werden große Energiemengen benötigt (Kompression ca. 12 %, Verflüssigung ca. 20 %). Daher ist die Wasserstoffspeicherung trotz vieler Vorteile derzeit (2021) oftmals unwirtschaftlich.

Arten der Wasserstoffspeicherung

Die unterschiedlichen Einsatzbereiche von sauberem Wasserstoff nach ihrer Wirtschaftlichkeit zugeordnet.

Bei den Verfahren zur technischen Speicherung von Wasserstoff in elementarer Form sind Druckbehälter erforderlich, wofür oft eine metallische Außenhülle verwendet wird. Das gilt auch für Flüssiggasspeicher und Metallhydridspeicher, die einen temperaturabhängigen Innendruck aufweisen. Für die Hochdruckspeicherung bei 700 bar finden auch kohlenstofffaserverstärkte Kunststoffe Verwendung, um das Gewicht des Tanks niedrig zu halten.

Für große Mengen in stationären Systemen sind derzeit Flüssiggasspeicher in Verwendung. Für kleine Mengen werden Druckspeicher bis 700 bar eingesetzt. Metallhydridspeicher werden dort verwendet wo das Speichergewicht keine große Rolle spielt, etwa auf Schiffen. Für Fahrzeuge und Flugzeuge werden wegen des geringen Gewichtes heute ausschließlich Drucktanks verwendet:

Toyota setzt ihn in seinem Brennstoffzellen-Fahrzeug FCHV-adv ein und erreicht damit eine Reichweite von 830 km.[26][27] Das Fahrzeug befindet sich bereits im kommerziellen Einsatz und kann geleast werden.[28]

Volkswagen baut einen 700-bar-Wasserstofftank im Tiguan HyMotion ein,[29] Mercedes im A-Klasse F-Cell „plus“ und Opel im HydroGen4.[30]

Bei Bussen werden inzwischen auch Drucktanks verwendet, wie z. B. im Citaro Fuel Cell Hybrid von Mercedes.[31]

Firmen, die in die Forschung und Produktion von Wasserstoffspeichern involviert sind, sind z. B. in Deutschland die Linde AG, in Norwegen und Island StatoilHydro[32] und in den USA Quantum Fuel Technologies Worldwide.[33]
Brennstoffzellen-SchienenfahrzeugeBearbeiten

 

Unfallgefahr

Die heute industriell eingesetzte Technik berücksichtigt die Hochentzündlichkeit des Wasserstoffes sowie seine Eigenschaft, explosives Knallgas zu bilden. Leitungen und Tanks sind entsprechend ausgelegt,[4][5] so dass im täglichen Gebrauch keine größeren Risiken entstehen als z. B. durch die Verwendung von Benzin.[34][35][36]

Wasserstofffahrzeuge mit Drucktanks können problemlos in Parkhäusern und Tiefgaragen geparkt werden. Es existiert keine gesetzliche Bestimmung, die das einschränkt. Fahrzeuge mit Flüssigwasserstoffspeichern dürfen wegen der unvermeidlichen Ausgasung nicht in geschlossenen Räumen abgestellt werden.