36 auf einen Streich – Forscher beobachten „unmögliche“ Ionisation
Weltstärkster Röntgenlaser schießt Rekordzahl von Elektronen aus einem Atom
Mit dem weltstärksten Röntgenlaser hat ein internationales Forscherteam unter Hamburger Leitung ein überraschendes Verhalten von Atomen entdeckt: Mit einem einzigen Röntgenblitz konnte die Gruppe um Daniel Rolles vom Center for Free-Electron Laser Science (CFEL) die Rekordzahl von 36 Elektronen auf einmal aus einem Xenon-Atom herausschießen. Das sind deutlich mehr, als bei der Energie der verwendeten Röntgenstrahlung rechnerisch überhaupt möglich ist. Die Wissenschaftler stellen ihre unerwarteten Beobachtungen im Fachblatt „Nature Photonics“ vor. Das CFEL ist eine Kooperation von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg.
Verliert ein Atom Elektronen, bekommt es eine positive elektrische Ladung – es wird ionisiert. Diese Ion isation ist umso stärker, je mehr Elektronen dem Atom entrissen werden. Die Forscher um Rolles von der Max Planck Advanced Study Group am CFEL hatten an der Linac Coherent Light Source (LCLS) des US-Forschungszentrums SLAC in Kalifornien Atome des Edelgases Xenon mit intensiven Röntgenlaserblitzen beschossen. Die Lichtteilchen (Photonen) der verwendeten Röntgenstrahlung hatten mit 1,5 Kilo-Elektronenvolt (1,5 keV) rund tausendmal mehr Energie als sichtbares Licht. Trifft so ein energiereiches Photon auf ein Elektron in der Xenon-Atomhülle, gibt es seine Energie an das Elektron ab. Durch diesen Stoß kann das Elektron aus der Atomhülle herausgeschubst werden – je nachdem, wie fest es gebunden ist.
Rechnerisch lassen sich bei der verwendeten Energie bis zu 26 der 54 Elektronen des Edelgases herausschießen, die übrigen sind zu stark gebunden. Tatsächlich beobachteten die Wissenschaftler jedoch, dass bis zu 36 Elektronen aus den Atomen flogen. „Nach unserem Wissen ist das die höchste Ionisation, die jemals mit einem einzigen elektromagnetischen Impuls in einem Atom erreicht worden ist“, betont Rolles, der künftig eine Helmholtz-Nachwuchsgruppe bei DESY leiten wird. „Unsere Beobachtung zeigt, dass die bestehenden theoretischen Ansätze modifiziert werden müssen.“
Ursache für die „unmögliche“ Ionisation ist eine sogenannte Resonanz: Im verwendeten Energiebereich können die Xenon-Elektronen sehr viel Röntgenstrahlung aufnehmen. Manche werden dadurch direkt aus dem Atom hinausbefördert, andere gehen in einen sogenannten angeregten, das heißt energiereicheren Zustand über, sind aber noch gebunden. Fällt eines der angeregten Elektronen jedoch in seinen Ausgangszustand zurück, wird wiederum Energie frei, die einem anderen angeregten Elektron den nötigen Extra-Schubs geben kann, um es ganz aus dem Atom zu befördern. In seltenen Fällen wird auch das bereits angeregte Elektron von einem zweiten Photon aus dem Röntgenblitz getroffen und so aus der Atomhülle geschossen.
„Das LCLS-Experiment hat einen unerwarteten und zuvor unerreichten Ladungszustand produziert, indem gleich Dutzende Elektronen aus einem Atom katapultiert wurden“, unterstreicht Ko-Autor Benedikt Rudek, Doktorand am Heidelberger Max-Planck-Institut für Kernphysik, der die Daten analysiert hat. „Die absorbierte Energie pro Atom war mehr als doppelt so hoch wie erwartet.“ Dieser Resonanzeffekt ist für Xenon gerade bei einer Energie von 1,5 keV besonders stark. Entsprechend beobachteten die Forscher selbst bei einer höheren Energie von 2 keV nur weniger stark ionisierte Atome. Auf Grundlage der Messungen verfeinerten CFEL-Wissenschaftler ein mathematisches Modell, mit dem sich solche Resonanz en in schweren Atomen berechnen lassen. In Folgeexperimenten haben Forscher unter anderem Krypton und Moleküle mit schweren Atomen an der LCLS untersucht, wie Ko-Autor Artem Rudenko betont, der inzwischen an der Kansas State University arbeitet und eines dieser Folgeexperimente geleitet hat.
Die Beobachtungen haben auch praktische Bedeutung für die Forschung: „Unsere Ergebnisse liefern ein Rezept, um den Elektronenverlust in einer Probe zu maximieren“, erläutert Rolles. Das kann erwünscht oder unerwünscht sein. „Beispielsweise können Forscher unser e Ergebnisse nutzen, die ein sehr stark elektrisch geladenes Plasma erzeugen wollen.“ Bei der Untersuchung biologischer Proben hingegen sollten Wissenschaftler die Resonanzbereiche solcher schweren Atome vermeiden. "Die meisten biologischen Proben enthalten einige schwere Atome", betont Rolles. Im Resonanzbereich werden solche Proben an diesen Stellen besonders schnell beschädigt, was die Abbildungsqualität beeinträchtigen kann.
Für die Präzisionsmessungen an der LCLS diente eine von der Max Planck Advanced Study Group (ASG) am CFEL zusammen mit de m Max-Planck-Institut für Kernphysik, dem Max-Planck-Institut für medizinische Forschung und dem Max-Planck-Institut Halbleiterlabor entwickelte Experimentierkammer, die in insgesamt 40 Kisten komplett nach Kalifornien verschifft wurde. Diese CFEL-ASG Multi-Purpose chamber (CAMP) war drei Jahre an der LCLS aufgebaut und kam bei mehr als 20 Experimenten zum Einsatz.
An der Untersuchung waren außer dem Hamburger Center for Free-Electron Laser Science, DESY und dem US-Forschungszentrum SLAC mehrere Max-Planck-Institute sowie rund ein Dutzend Institutionen a us Deutschland, Frankreich, Japan und den USA beteiligt.